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Abstract. We study the luminescence spectrum of doped direct and indirect quantum wells.
The Bethe–Salpeter equation is solved in a three-band model of parabolic wells including a
static screened Coulomb interaction. In order to obtain a strong enhancement at the Fermi edge
we found that it is necessary to break the symmetry of the system by shifting the electron and
the hole confining parabolic potentials with respect to each other. This condition allows for
a new scattering mechanism which is responsible for strong enhancements. Taking an infinite
mass for the hole we found an increasing signal of the spectrum at the Fermi edge when two
conditions are fulfilled: (i) the separation between the electrons and hole gravity centres is of the
order of the well width; and (ii) the Fermi edge is close to the bottom of the second conduction
subband. The effects of temperature and hole localization are analysed. Satisfactory agreement
with recent experimental results is obtained.

1. Introduction

The investigation of a two-dimensional electron gas (2DEG) in modulation-doped quantum
wells has recently attracted attention both as regards the fundamental physics and as regards
potential device applications [1–6]. The spatial separation between the 2DEGs and the
dopants allows one to obtain a high mobility of the electrons and consequently a reduced
scattering by impurities. So far, experimental and theoretical studies have concentrated on
transport properties. However, optical properties have in recent years received considerable
attention from the physics point of view and as regards possible applications in technological
devices—for example quantum well lasers [7] and high-electron-mobility transistors [8]. In
particular, spectroscopy of doped parabolic quantum wells (DPQW) is of great interest
because such systems are quasi-two-dimensional in terms of the Coulomb effects and allow
one to observe many-body effects such as: (i) the breakdown of the fractional quantum
Hall effect when the width of the electronic layer is increased [9]; (ii) the presence of a
strong Fermi-edge singularity (FES) [10–14] due to the multiple electron–hole scattering;
and (iii) the existence of shake-up processes [15]. In particular, much of the previous
experimental and theoretical work was focused on modulation-doped symmetric quantum
wells (in the following, direct systems) where the presence of the FES is discussed in terms
of the strong localization of the photoexcited hole [16, 17, 18]. In this case the excitation is
performed under low-power excitation so that the photoexcited carriers can be considered
as in equilibrium with the Fermi sea of doping-originated electrons, where the electrons and
holes coexist in the same spatial region and a strong electron–hole overlap occurs. Due to
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the symmetry of this system, coupling of the FES with virtual transitions to other conduction
subbands cannot be achieved.

Therefore, we are interested in the study of the FES in asymmetric modulation-doped
quantum wells (AMDQW) (in the following, indirect systems) where new and interesting
experimental results have emerged. Although the wells are no longer parabolic, we can
still retain parabolic potentials to describe the lowest states of actual wells. Due to the
asymmetry of the confining potential the wavefunctions of different electron subbands have
different extensions in real space normal to the plane containing the 2DEG and thus have
different overlaps with the hole wavefunction. This large difference in the wavefunction
overlaps can result in the presence of any transition from the lowest electron subbands to the
hole states when there is more than one electron subband populated. In this case, one of the
most striking features is the strong enhancement of the luminescence arising from the Fermi
edge [19, 20]. The presence of a FES in symmetric quantum wells has been confirmed by
experiments [3, 10, 12, 21] involving localized holes but with a signal at the Fermi level
lower than in the asymmetric case. There, strong enhancements appear due to the spatial
breaking of the symmetry in the system, with the gravity centres of the wavefunctions for
electrons and holes separated by a distancea. The experimental situation shows that the
creation of the photohole represents a finite perturbation to the Fermi sea previously in
equilibrium. Therefore, these are good systems for which to study many-body problems
close to equilibrium situations. For this case we use Feynman diagram techniques, and
sum the most divergent terms up to the second order. We found that the ladder approach
describes the experimental situation well [4, 11, 12] provided that the finite lifetime of the
hole is taken into account. For these asymmetric quantum wells experiments have shown
that parameters such as the separation between the bottom of the second subband and the
Fermi edge, temperature effects, and thea-separation become important for the optical
response of the system at the Fermi edge [4, 12, 22]. Therefore, one of the main objectives
of this paper is to study a FES coupled with a resonant state.

By solving numerically the Bethe–Salpeter equation we study the luminescence spectrum
of parabolic MDQW for direct and indirect systems. In this case the ladder approximation is
valid if we take into account an appropriate screened electron–hole interaction and adequate
spectral functions for the hole [13, 16, 18, 23, 24]. It must be pointed that femtosecond
pulsed laser experiments in which the photoinduced carriers are far from equilibrium need to
be described using more elaborate theories [25, 26]. We will show that the FES intensity can
be regulated by changing the separationa of the parabolic potentials confining electrons and
holes as well as the intersubband spacing1 controlled by the curvature of the potentials.
When the separation of the hole wavefunction from the 2DEG is approximately of the
same order as the width of the well and independent of the intraband spacing, the signal at
the Fermi edge increases. This increase is much stronger when the Fermi level is slightly
below the bottom of a subband. In this case a new scattering channel couples the transitions
between electrons at the Fermi edge through empty states at the bottom of the next subband.

Luminescence spectra are analysed as a function of temperature. For indirect systems
a second peak in the emission spectrum appears, due to the electrons thermally excited
to the bottom of the next subband. The FES disappears when the temperature reaches
approximately 70 K in satisfactory agreement with recent experiments performed on
MDQWs [19, 20]

The paper is organized as follows. Expressions for the interacting electron–hole Green
function within a ladder approximation and for the appropriate screened electron–hole
Coulomb interaction within a random-phase approximation (RPA) are given in section 2.
Effects of finite temperature, different electron densities and the hole lifetimes have been
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taken into account. In section 3 the numerical results are given and a comparison with
the experimental situation is established. Finally, the main conclusions are summarized in
section 4.

2. Description of the model

To calculate the optical properties of the Q2D electron gas, we follow the formalism given
in [23, 24, 27]. This formalism can be used in systems near to the equilibrium situation
in which a thermodynamic basis is well known. The luminescence spectrum for MDQW
systems is obtained using the Bethe–Salpeter equation (the ladder approximation) [23, 24,
27, 28]. As has been discussed [24, 27, 29] the ladder approximation does not give good
results if the electron–hole interaction and the hole lifetime are not considered appropriately.
The summing of ladder diagrams for an on-site interaction can be performed exactly and
the emission or absorption at the Fermi level can develop a strong enhancement only if
the inverse of the non-interacting electron–hole Green function as a function of frequency
intersects the on-site value potential [13, 24, 29]. Then, the spectrum shows a logarithmic
divergence at the Fermi level arising from a simple pole in the non-interacting electron–
hole Green function instead of a potential divergence as it should. Consequently an on-site
interaction cannot be used and it is necessary to take into account an adequate electron–hole
interaction, screened by the Fermi sea. Moreover, in order to get an adequate lineshape
for the emission spectra, the lifetime of the valence band hole must be considered. This
can be included in a consistent form within the ladder approximation by dressing the hole
propagator [18, 23, 24]. This produces a power-law divergency at the Fermi level instead of
the incorrect logarithmic one. In our model we consider a quasi-2DEG, in which electrons
are free to move in thex–y plane, with a harmonic oscillator confinement in thez-direction.
In order to simplify the numerical calculations for the Bethe–Salpeter equation, we assume
a static screened electron–hole Coulomb interaction. In this way, plasmons satellites arising
from electron–electron interactions are not considered here.

Within a ladder approximation the interacting electron–hole Green function for
equilibrium systems at finite temperatures can be written, in two dimensions, as

Gnv,nc;n′
v,n

′
c
(k, k′, ω)

= G0
nv,nc;n′

v,n
′
c
(k, k′, ω) + 1

A

∑
0′′,0′′′

G0
nv,nc;n′′

v ,n
′′
c
(k, k′′, ω)

×V
(s)

n′′
v ,n

′′
c ;n′′′

v ,n′′′
c
(|k′′ − k′′′|)Gn′′′

v ,n′′′
c ;n′

v,n
′
c
(k′′′, k′, ω) (1)

where 0′′ = [n′′
c , n

′′
v, k

′′], nv and nc being the valence and conduction subband indices,
respectively,k′′ is the two-dimensional wavevector andA represents the area of the quantum
well. The first term in (1) represents the non-interacting electron–hole Green function given
by

G0
nv,nc;n′

v,n
′
c
(k, k′, ω)

= δnv,n′
v
δnc,n′

c
δ(k + k′)

∫
dωh Ah(−k, ωh)

1 − nF (Ee(k)) − nF (Eh(k))

ω − Ene
(k) − ωh + iδ

(2)

wherenF (Ee (h)(k)) is the Fermi distribution for electrons (holes).
The self-energy of the valence band hole is included by dressing the hole propagator

through a spectral functionAh(−k, ωh). The explicit form of this function has been
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discussed previously [18, 24, 30, 31], the only difference arising from theg-factor which
depends on the dimensionality through the electron polarizability and the screened Coulomb
potential. This term takes into account the rate of creation of electron–hole pairs at the Fermi
energy; the explicit form in two dimensions is given later.

In order to use the Bethe–Salpeter equation, we need to calculate the screened Coulomb
matrix elements for direct and indirect systems.

2.1. The screened Coulomb interaction

2.1.1. Direct systems.For direct systems, we assume that electrons and holes are confined
in the samez-spatial region by parabolic potentials and that they are free to move in the
x–y plane. The eigenfunctions for electrons and holes are given by

9n,k(ρ, z) = eik·ρ
√

A
ψn(z) (3)

where

ψn(z) =
√

1

2nn!
√

πl
e−z2/2l2

Hn

(z

l

)
.

Here n represents the subband index andHn a Hermite polynomial. We assume that the
electrons and holes are characterized by the same characteristic lengthl = √

(h̄2/m∗
e1).

The free-particle dispersion is assumed to be parabolic, i.e,Ee(k) = Eg + h̄2k2/2m∗
e and

Eh(k) = −h̄2k2/2m∗
h, wherem∗

e and m∗
h represent the effective masses of electrons and

holes, respectively,1 is the characteristic frequency of the harmonic potential confining
electrons andEg is the energy gap. From the wavefunctions of electrons and holes, it
is straightforward to get the unscreened Coulomb interaction between them. The bare
electron–hole Coulomb interaction in two dimensions reads in general

V
(0)

i,j ;m,n(k, k′, k′′, k′′′) = −e2

εs

∫
dre

∫
drh

9i,k(ze)9
∗
j,k′(ze)9m,k′′(zh)9

∗
n,k′′′(zh)√

(ρe − ρh)
2 + (ze − zh)2

(4)

where ρe and ρh are two-dimensional vectors for electrons and holes in thex–y plane
respectively. ForEF < 1 the effects of higher subbands can be neglected for direct
systems. Therefore, only one matrix element of the bare Coulomb interaction has to be
calculated, given by

V
(0)

0,0;0,0(q) = −2π

q

e2

εs

F0,0;0,0(q) (5)

where the factor 2πe2/(εsq) is the purely 2D Coulomb interaction andF0,0;0,0(q) represents
the form factor, which takes into account the effect of confinement from a pure 2D system
to the quasi-three-dimensional (Q3D) system,

F0,0;0,0(q) = eq2l2/2

[
1 − 8

(
ql

2

)]
where8(ql/2) is the complementary error function [32] andq = |k−k′| is the relative total
momentum. In undoped systems this is the correct potential to use for the electron–hole
interaction. If there is a large electron concentration, however, the bare Coulomb potential
will be screened by the electrons. This is given in the RPA by the static dielectric constant

ε0,0;0,0(q) = 1 − χ0,0(q)V
(0)

0,0;0,0(q) (6)
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with the polarizability function given by

χ0,0(q) = − m∗
e

πh̄2

{
1 x < 1

1 −
√

1 − x2 x > 1
(7)

with x = 2kF0/q, and wherekF0 represents the Fermi momentum in the first subband,kF0 =
(2m∗

eEF /h̄2)1/2. Note thatχ0,0(q) depends only onq and thatEF → 0 ⇒ χ0,0(q) → 0 and
henceε0,0;0,0 → 1. When considering only s-wave electron–hole scattering, the screened
Coulomb interaction is replaced in the Bethe–Salpeter equation by its angle-averaged value

V
(s)

0,0;0,0(k, k′) = 1

2π

∫ 2π

0
dθ V

(s)

0,0;0,0(|k − k′|) (8)

where

V
(s)

0,0;0,0(q) = V
(0)

0,0;0,0(q)

ε0,0;0,0(q)
(9)

represents the diagonal-matrix screened Coulomb interaction. It must be pointed out that
this is only valid if just one conduction subband is occupied by free carriers.

2.1.2. Indirect systems.In this case, we assume that the gravity centre for the hole is
displaced in thez-direction a distancea from the 2DEG. This breaking of symmetry
provokes the hole potential to couple electron states from different subbands. The
eigenfunctions for electrons are the same as for the direct systems. The hole will be
characterized by a wavefunction

ψ0(z − a) =
[

1√
πl2

]1/2

e(z−a)2/2l2
. (10)

Therefore, we analyse only interactions between first heavy-hole, v, subbands to first, c1,
and second, c2, conduction subbands. Within this three-band model a new scattering channel
is opened and the enhancement of the FES can be explained by the resonant coupling of
the states c1 and c2

Due to the width of the well in thez-direction the bare Coulomb interaction is reduced
by a form factor, which takes into account the confinement in this direction:

V
(0)

i,j ;m,n(q, a) = −2πe2

εsq
Fi,j ;m,n(q, a) (11)

where the form factor is given by the termFi,j ;m,n andi, j ; m, n represent subband indices.
We define the functions

8(+) = 8

[(
q + a

l2

) l√
2

]
8(−) = 8

[(
q − a

l2

) l√
2

]
(12)

where8(x) represents the complementary error function [32]. In our case, the form factors
of the bare Coulomb elements which play an important role in the enhancement at the Fermi
edge are given by intrasubband terms

F0,0;0,0(q, a) = 1

2
e−a2/2l2

[
e(l2/2)[q+a/l2]2

(1 − 8(+)) + e(l2/2)[q−a/l2]2
(1 − 8(−))

]
(13)

F0,1;0,1(q, a) =
[

1 +
(

ql√
2

)2
]

F0,0;0,0(q, a) − ql√
2π

e−a2/2l2
(14)
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and intersubband terms

F0,0;0,1(q, a) = −ql
1

2
e−a2/2l2

[
e(l2/2)[q+a/l2]2

(1 − 8(+)) − e(l2/2)[q−a/l2]2
(1 − 8(−))

]
. (15)

Equations (13)–(15) multiplied by the bare Coulomb interaction in two dimensions represent
the electron–hole intrasubband and intersubband elements respectively. Note that fora = 0,
F0,0;0,1(q, a) = 0, so a coupling between the first and second conduction subbands through
the hole potential does not occur.

In order to obtain the appropriate screened Coulomb interaction, the dielectric constant
of the system has to be found. Due to the asymmetry of the potential, the dielectric constant
matrix will become non-diagonal. Depending on whether the second conduction subband
is occupied or unoccupied by electrons a new term in the polarizability function appears or
does not; it is given by

χ0,1(q) =



1 if x0 > y0 andx1 > y1

1 − 1

2

√
y0 − x0 if x0 < y0 andx1 > y1

1 − 1

2

√
y1 − x1 if x0 > y0 andx1 < y1

1 − 1

2

√
y1 − x1 − 1

2

√
y0 − x0 if x0 < y0 andx1 < y1

(16)

where the subband indices 0 and 1 label the first and second electronic subbands respectively,
and

x0 =
(

2kF0

q

)2

x1 =
(

2kF1

q

)2

y0 =
(

1 + 1

Ee(q)

)2

y1 =
(

1 − 1

Ee(q)

)2

.

kF0 and kF1 represent the Fermi momentum in the first and second conduction subbands,
respectively. Note thatχ0,1 = χ1,0. With these matrix elements known, we can calculate
all screened Coulomb matrix elements (details are given in [31]).

2.2. The hole spectral function

In order to obtain an adequate non-interacting electron–hole Green function, it has been
shown [13, 24, 23, 31, 33, 34] that it is necessary to take into account the hole lifetime.
This can be calculated if we consider the interactions between the valence band hole
and the electron–hole pairs at the Fermi level in a way that is consistent with the ladder
approximation. By contrast, for electrons this point is not so important, because electron
lifetimes imply broadenings much smaller than the electronic chemical potential. Thus, the
electron spectral function is taken as

Ae = 2π δ(h̄ω − Ee(k)). (17)

Due to the sudden appearance of the hole, low-energy electron–hole pairs around the
Fermi level are generated. The number of these excitations can be calculated as

R(ω) = 1

4π3

∫
d2k

[
V

(0)

0,0;0,0

|ε(k, 0)|

]2 [−Im χ0,0(k, ω)
]

(18)
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where Imχm,n is the imaginary part of the multiband electron polarizability given by

Im χm,n(q, ω)

= m∗
e

πh̄q


[
k2
Fn

−
(

Eq − h̄ω − 1nm

h̄2q/m

)2
]1/2

+
[
k2
Fm

−
(

Eq + h̄ω − 1mn

h̄2q/m

)2
]1/2

 (19)

for ω 6= 0, while Imχm,n(q, 0) = 0. 1mn = En −Em represents the electronic intersubband
separation. For low-energy excitationsR(ω) is given as a linear function of frequency:

R(ω) = gω (20)

whereg is given by

g = 1

1 + kF εh̄2/m∗
ee

2
(21)

in two dimensions [30]. The main difference from the one-dimensional case is that now
this exponent depends on the electronic density. With this term the hole spectral function
Ah can be easily calculated in the same way as for the one-dimensional case [24]. It is
important to note that the spectral function needs to be calculated up to second order in
the perturbation diagrams in order to be consistent with the ladder approximation. This
gives a good lineshape. From this the non-interacting electron–hole Green function can be
obtained.

2.3. Interacting electron–hole Green functions

In indirect systems we need to solve a set of Bethe–Salpeter coupled equations. For the
case of one hole and two conduction subbands of interest here, we obtain a set of four
equations from which all intrasubband and intersubband transitions can be obtained [34]:

G00;00 = G
(0)

00 + G
(0)

00 V
(s)

00;00G00;00 + G
(0)

00 V
(s)

00;01G01;00

G01;00 = G
(0)

11 V
(s)

01;00G00;00 + G
(0)

11 V
(s)

01;01G01;00

G00;01 = G
(0)

00 V
(s)

00;00G00;01 + G
(0)

00 V
(s)

00;01G01;01

G01;01 = G
(0)

11 + G
(0)

11 V
(s)

00;01G00;01 + G
(0)

11 V
(s)

01;01G01;01

(22)

whereGij ;kl andG
(0)
ii represent the matrix elements of the interacting and non-interacting

electron–hole Green functions respectively. In this set of equations the off-diagonal term
G00;01 represents the mixing of v–c1 and v–c2 transitions and it will be responsible for
the enhancement of the FES in the luminescence spectrum. Note that the intersubband
propagatorsG01;00 = G00;01 in (22) disappear whenV00;01 or V01;00 is equal to zero, i.e.,
for a direct system. The screened Coulomb interaction componentV

(s)

00;10 represents the
scattering of a first conduction subband electron by a second subband conduction electron
due to the presence of the hole [31].

3. Results and comparison with the experimental situation

Firstly, we analyse the effects arising from the finite mass of the hole in a symmetric system.
The parameters used in our calculation are as follows:εs = 12, m∗

e = 0.067m0 and the
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Figure 1. Luminescence spectra for a direct quantum well. The hole mass is varied in units
of the electron effective massm∗

e . EF = 3.6 meV, 1 → ∞ andE0 = 6 meV. The energy is
measured with respect to the quantum well gapEg .

exciton binding energyE0 = 6 meV. In order to describe the hole mobility, we show in
figure 1 the numerical results obtained by solving the Bethe–Salpeter equation with different
hole masses. We use the parametersEF = 3.6 meV andT = 3 K [35]. We suppose that our
system is in the two-dimensional quantum limit, i.e., that the second conduction subband
is far away from the Fermi edge (1 → ∞), and yet reaches a quasi-equilibrium state.
We consider only recombination processes between electrons occupying the first conduction
subband and the hole in the valence band.

Of particular interest in figure 1 is the change in the lineshape of the luminescence
spectrum when the hole mass goes frommh = 5m∗

e to mh = 1000m∗
e , i.e. to practically

infinity, showing a clear enhancement at the Fermi level. Optical processes must conserve
momentum. Now, the luminescence spectrum involves two types of transition ink-space:
(1) indirect transitions that recombine electrons at the Fermi level with holes at the top of
the valence band, with the simultaneous excitations of electron–hole pairs at the Fermi level
which ensure energy and momentum conservation; the minimum energy required for such
process is given by ¯hωi = Eg + EF ; (2) direct transitions that recombine electrons at the
Fermi level with holes with the same momentum. In order to ensure momentum conservation
a minimum energy ¯hωd = Eg + (1 + m∗

e/m∗
h)EF is required as is a momentumke

F = kh
F .

For a finite effective hole mass, the holes thermalize quickly to the top of the valence band
(kh = 0) and so momentum conservation occurs only if the recombination processes occur
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with ke = 0. The energy difference between indirect and direct transitions allows the hole
relaxation, and all the transitions from the top of the Fermi edge will become broadened.
Therefore, a weak FES appears at ¯hω − Eg = (1 + m∗

e/m∗
h)EF . As we see in figure 1

the main contribution to the luminescence spectrum arises from electrons at the bottom of
the conduction subband (ke ≈ 0) (the continuous line). By contrast, if the hole mass is
increased, i.e, if the dispersion relation for the hole flattens, the behaviour of the hole is
similar to that of a scattering centre for the electrons, and direct transitions are possible. This
behaviour is consistent with the fact that no FES was observed in high-quality modulation-
doped multiple quantum wells, while they are better observed when some disorder localizes
the holes [36, 37]. In figure 1 the washout of the FES in the emission spectrum for the
finite-hole-mass case is clearly shown. Then, a FES arises only from electronic correlations
at the Fermi edge. Similar behaviour is shown by other theoretical models for absorption
spectra [16, 17]. In order to understand another characteristic of the FES in both types of
system we take, in the following, an infinite mass for the hole.

Figure 2. Emission spectra of direct quantum wells for different intrasubband separations for
EF = 3.6 meV,mh → ∞ and temperatureT = 3 K.

3.1. Direct systems

3.1.1. The confining potential.In this section we study how a FES is affected by electronic
confinement in thez-direction. We first consider the behaviour of a direct system, with the
same parameters as in figure 1, when the system goes from being a purely 2D system to
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being a Q3D system, i.e. from1 → ∞ to a finite value of1. The well width varies
according to the variation of1. Our results in figure 2 show that when the width of the
well is increased, i.e., a Q3D system in terms of Coulomb interaction, the electron–hole
interaction decreases, due to a form factor less than one, and therefore the FES is strongly
suppressed. For values1 > EF , the FES is more evident in 2D systems than in Q3D
systems. Therefore, in these direct systems, the FES is lower in intensity when the second
subband is close to the top of the Fermi level. Due to the symmetry of the system it is
possible to have transitions between even- or odd-parity electron bands, but they never
interfere with each other, even in the case whereEF > 1.

Figure 3. Emission spectra of direct quantum wells for different temperatures.EF = 41 meV,
mh → ∞ and1 → ∞.

3.1.2. Temperature effects.In figure 3 we show the emission spectrum for different values
of temperature and for a high electron density,EF = 41 meV, which corresponds to a
two-dimensional density ofn ≈ 1× 1012 cm−2. In this case, electrons thermally excited to
the next subband do not play an important role, so we will limit ourselves to considering
just electron–hole correlations at the Fermi level. The main effect produced by electron–
electron interaction is the appearance of the FES. Neglecting many-body effects, and for low
temperatures, the emission spectra would be given by the convolution of the two-dimensional
electron and hole densities of states multiplied by their respective Fermi functions. The
luminescence lineshape would correspond to the steplike 2D joint density of states, with
total width given byEF , since the chemical potential of holes is zero.
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For low temperatures the peak of the FES is stronger than for the high-temperature
case [11]. The peak at the Fermi edge begins to decrease in intensity when the temperature
is increased up to 40 K. At this temperature the electron correlations are diminished as
a consequence of the broadening at the Fermi edge. When the temperature is further
increased to 70 K the spectra only show a shoulder associated with the remainder of the
FES. At temperatures of the order of the exciton binding energyE0 we see that many-body
effects do not significantly affect the spectrum at the Fermi level. We believe that this peak
must be even lower in intensity, because the effects of temperature were considered in the
non-interacting electron–hole Green function but not in the polarizability of the screened
Coulomb interaction. In order to obtain a more quantitative agreement with the experimental
results it is necessary to include temperature effects both in the screened interaction as well
as in the hole spectral function. However, these features should not drastically change the
physics associated with the FES and their inclusion will make the theoretical treatment
much more cumbersome.

Figure 4. The emission spectrum in indirect doped quantum wells for different electron–hole
separationsa. T = 6 K, EF = 36 meV,1 = 41 meV andmh = 10 000m∗

e .

3.2. Indirect systems

3.2.1. Effects of broken symmetry.Heretofore our results have been for a single DPQW
with electrons and holes coexisting in the same spatial region. The luminescence spectrum
changes if this condition is broken, because the symmetry and selection rules are different
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when the 2DEG and the hole no longer coexist in the same spatial region. The luminescence
spectrum calculated as a function of the electron–hole separationa is shown in figure 4.
We have taken the same parameters as for the experiment described in [12],EF = 36 meV,
T = 6 K, 1 = 41 meV. We suppose a dispersionless hole (mh = 10 000m∗

e ) due to
impurities, potential fluctuations, etc.

Firstly, we consider the case in which the effects arising from electrons excited to the
second subband are not very important. A difference in energy from the Fermi level to
the bottom of the second conduction subband of 5 meV has been considered. In this case
we observe that the breaking of symmetry in the problem leads to an enhancement at the
Fermi edge, as compared with the symmetric case,a = 0 nm. The contributionG01;01

(22), arising from virtual transitions from the Fermi edge to the second subband, is not
crucial because of the large interband separation1. This allows us to restrict our study to
the effects arising from thea-separation over the FES. The maximum value of the FES is
obtained whena ≈ le, i.e., the hole attains the maximum probability amplitude at the edge
of the electron well.

Figure 5. The emission spectrum of indirect quantum wells for varying electron–hole separation
a. T = 6 K, EF = 36 meV,mh = 10 000m∗

e and 1 = 37 meV. The resonance at the Fermi
edge is increased without having thermally excited electrons populating the second subband.

The monoelectronic wavefunctions of the c1 and c2 conduction subbands have different
spatial extensions in thez-direction and consequently different overlaps with the hole
wavefunction. Forq ≈ 0 our results show that the interactionsV

(s)

0,1;0,1 > V
(s)

0,0;0,0 just
whena → le. For this value ofa, the interband term is greater asq → ±kF , which is the
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most important region for computing the interacting electron–hole Green function. This is
due to the fact that overlapping between the monoelectronic functions from the electrons
in the second subband is greater than that of the first electronic subband with the hole. It
will be reflected in the response function through the coupling between electron states with
q = ±kF and electron states withq = 0, opening up a new resonant scattering channel and
producing an increase in the luminescence signal at the Fermi edge [15, 19, 20, 22, 38].

Intraband interactions, obviously, decrease when the separation distancea is further
increased. The intrasubband transitions given in (22) by the symmetric propagators,
G00;10+G01;00, are different from zero and contribute to the spectrum. Our results show that
the FES, coming from low-energy excitations at the Fermi edge, can be coupled to virtual
transitions through a new scattering channel, the bottom of the second subband, increasing
the luminescence signal at the Fermi edge [12, 21, 22]. In the direct case, these terms are
zero, so the mixing does not occur and the contribution of a new channel that couples the
FES with a resonant state cannot be invoked.

Figure 6. The luminescence spectrum of indirect quantum wells for different electron–hole
separationsa. T = 6 K, EF = 36 meV, mh = 10 000m∗

e and 1 = 24 meV, so the second
conduction subband is populated by free carriers.

In order to clarify the effect of this new channel we change the width of the well in
the z-direction, i.e. we move the bottom of the second electronic subband with respect to
the Fermi edge. As we show in figure 5, when the separation between the Fermi edge and
the bottom of the second conduction subband is 1 meV we can observe that the resonance
at the Fermi edge clearly increases. The main contribution to the spectrum comes from
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the G00;10 + G01;00 terms which are the responsible for the mixing of the v–c2 resonance
with excitations of the Fermi sea. Therefore, a strong resonant coupling between the v–
c2 transition and the FES in a 2DEG is shown in the luminescence spectrum [12]. This
behaviour is similar to that in the case in which the second subband is really populated by
free carriers. This case is shown in figure 6 where we take1 = 24 meV. Dipole matrix
elements have been taken as constant because they do not qualitatively change the physics of
the system [39]. In this case two singularities appear arising from the first and second Fermi
wavevectors in each conduction subband. Our results show clearly that the FES arises only
from low-energy excitations at the Fermi edge and also that it can be increased inindirect
systems, if the intraband separation is reduced. In this case, the low-energy excitations,
or electron–hole pairs, have a high probability of mixing with excitations coming from
electrons in the second subband. It is worth nothing that these transitions are virtual, and
that the coupling of the FES to resonances can be an efficient mechanism for controlling
the luminescence enhancement at the Fermi level.

The final result is that the intensity of the FES in indirect systems for finiteq is stronger
than in the direct case and clearly explains the importance of a vicinal conduction subband.

Figure 7. The emission spectrum of indirect quantum wells fora = le at different temperature
values:T = 6 K (continuous line);T = 20 K (dotted line);T = 40 K (dashed line);T = 70 K
(chain line). The second peak corresponds to transitions of electrons thermally excited to the
next conduction subband.EF = 36 meV,mh = 10 000m∗

e and1 = 41 meV.
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3.2.2. Temperature effects.In figure 7 we show the luminescence spectrum for different
temperatures. The results are shown for experimental parameters [20]EF = 36 meV and
1 = 41 meV, and for the most favourable situation for obtaining a strong FES,a ≈ le.
The FES as well as in the symmetric case disappears forT ≈ 40 K. When the temperature
is roughly the difference between the bottom of the second conduction subband and the
Fermi edge, the spectrum shows a second peak above the previous FES. This peak arises
from transitions of electrons thermally excited to the second conduction subband, showing
typical behaviour of QW spectra [11, 20, 38, 40]. When the width well is increased and
the temperature is raised the spectrum is dominated by transitions to the second subband
and the FES decreases. This again agrees with the experimental temperature dependence.

In general when our results are compared with the experimental situation we find a
satisfactory qualitative agreement. This supports the ladder approximation as being adequate
for studying the experimental spectra under low-power optical excitation, where quasi-
equilibrium systems should be considered.

4. Conclusions

Summarizing the results obtained, we have studied the luminescence spectra of direct and
indirect doped quantum wells with a parabolic confinement. We use a three-subband model
within the ladder approach for the spectra and the RPA approach for the screening response
of the electron Fermi sea. The luminescence spectrum is studied as a function of the
temperature, width of the well and effective mass for the hole. It is possible to observe
FESs in these systems, when one condition is fulfilled: that of an infinite mass for the
hole. This condition is physically justified as being due to potential fluctuations, impurities,
etc. The FES is easier to observe in Q2D systems than in Q1D or Q3D systems due to
the decrease of the joint density of states and the confinement potential, respectively. At
temperatures of 60 K the Fermi surface is broadened and the electron correlations diminish,
so the FES is quenched.

For indirect systems, spatial symmetry breaking produces important effects in the
luminescence spectrum. This spatial breaking of symmetry implies that all transitions are
allowed. According to the spatial separation between the 2DEG and the hole we found that
the electron coupling between electrons coming from the first and second subband presents
a maximum fora ≈ le. This characteristic allows the resonant mixing between the states
at the Fermi level and virtual transitions to the next conduction subband. Therefore an
enhancement in the luminescence signal is observed. For direct and indirect systems the
temperatures at which the FESs disappear are similar. Even when a thermal population of
electrons in the second subband exists, transitions of these electrons do not contribute to
the enhancement of the FES. The main result is that the FES is stronger in indirect than in
direct systems due to the fact that a new scattering channel is opened. We must stress that
our approach is valid only in situations close to equilibrium.
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